

Comparing sustainability credentials for aquafeed

ingredients using Life Cycle Assessment

Dave Little

Life Cycle Assessment – why?

Label	Name	Value	Unit	Uncertainty
[E10]	NMVOC, non-methane volatile organic co	0.00012	kg	L(0.206)
[E11]	Carbon dioxide, fossil[air]	0.19	kg	L(0.0345)
[E12]	Ammonia[air]	2.61E-5	kg	L(0.108)
[E13]	Nitrogen oxides[air]	5.13E-5	kg	L(0.206)
[E14]	Particulates, < 2.5 um[air]	8.48E-6	kg	L(0.554)
[E15]	Particulates, > 10 um[air]	7.81E-5	kg	L(0.215)
[E16]	Particulates, > 2.5 um, and < 10um[air]	1.35E-5	kg	L(0.354)
[E17]	Zinc, ion[fresh water]	2.7E-7	kg	L(0.864)
[E18]	Lead[fresh water]	3.93E-9	kg	L(0.864)
[E19]	Nickel, ion[fresh water]	1.23E-9	kg	L(0.864)
[E21]	Copper, ion[fresh water]	6.39E-9	kg	L(0.633)
[E22]	Chromium, ion[fresh water]	4.55E-10	kg	L(0.633)
[E23]	Cadmium, ion[fresh water]	9.55E-11	kg	L(0.633)
[E42]	Carbon monoxide, fossil[air]	0.000984	kg	L(0.806)
[E44]	Dinitrogen monoxide[air]	2.66E-6	kg	L(0.211)
[E57]	Methane, fossil[air]	5.42E-6	kg	L(0.206)
[E64]	Sulfur dioxide[air]	6.03E-6	kg	L(0.0588)
[E67]	Toluene(air)	1.05E-5	kg	L(0.206)
[E153]	Benzene[air]	7.28E-6	kg	L(0.206)
[E206]	Cadmium[air]	1.33E-9	kg	L(0.845)
[E207]	Chromium[air]	9.57E-9	kg	L(0.845)
[E208]	Copper[air]	1.14E-7	kg	L(0.845)
[E209]	Nickel[air]	1.01E-8	kg	L(0.845)

Label	Name	Value	Unit	Uncertainty
[E10]	NMVOC, non-methane volatile organic co	0.00013	kg	L(0.206)
[E11]	Carbon dioxide, fossil[air]	0.175	kg	L(0.0345)
[E12]	Ammonia[air]	1E-6	kg	L(0.108)
[E13]	Nitrogen oxides[air]	0.000518	kg	L(0.206)
[E14]	Particulates, < 2.5 um[air]	3.71E-5	kg	L(0.554)
[E15]	Particulates, > 10 um[air]	7.93E-5	kg	L(0.215)
[E16]	Particulates, > 2.5 um, and < 10um[air]	1.59E-5	kg	L(0.354)
[E17]	Zinc, ion[fresh water]	2.7E-7	kg	L(0.864)
[E18]	Lead[fresh water]	3.93E-9	kg	L(0.864)
[E19]	Nickel, ion[fresh water]	1.23E-9	kg	L(0.864)
[E21]	Copper, ion[fresh water]	6.39E-9	kg	L(0.633)
[E22]	Chromium, ion[fresh water]	4.55E-10	kg	L(0.633)
[E23]	Cadmium, ion[fresh water]	9.55E-11	kg	L(0.633)
[E42]	Carbon monoxide, fossil[air]	0.00061	kg	L(0.806)
[E44]	Dinitrogen monoxide[air]	5.61E-6	kg	L(0.211)
[E57]	Methane, fossil[air]	3.28E-6	kg	L(0.206)
[E64]	Sulfur dioxide[air]	5.55E-6	kg	L(0.0588)
[E67]	Toluene(air)	4.38E-7	kg	L(0.206)
[E153]	Benzene[air]	1.81E-6	kg	L(0.206)
[E206]	Cadmium[air]	1.28E-9	kg	L(0.845)
[E207]	Chromium[air]	9.33E-9	kg	L(0.845)
[E208]	Copper[air]	1.05E-7	kg	L(0.845)
[E209]	Nickel[air]	9.71E-9	kg	L(0.845)

Life cycle approach to impact assessment - LCA

- Environmental impacts do not just occur on the production unit
 - Feed ingredients
 - Feed processing
 - On farm production
 - Processing
 - Distribution
 - Consumption
 - Waste disposal
- All require land, water, raw materials and energy, and can lead to harmful emissions

Characterisation

- How do we make sense of the long list of emissions?
- Characterisation to reference compound e.g. Global Warming Potential (GWP)

Compound	CO ₂ eq.		
CO ₂	1		
CO ₂ CH ₄	25		
N ₂ O	298		
CHF ₃	14800		
CHF ₃ CCl ₃ F	4750		
SO ₂	0		

- All impacts are "characterised" to a standard descriptor e.g. CO₂ eq
- Other impact categories are characterised in a similar way.

LCA impact categories – Carbon Footprint and much more!

Global Warming Potential (carbon footprint)

Acidification Potential

https://commons.wikimedia.org/wiki/File:Silberwald_NationalparkHarz.jpg

Eutrophication Potential

Ozone Depletion Potential

- Typically:
 - Global warming potential
 - Acidification potential
 - Eutrophication potential
 - Photochemical oxidant formation
 - Aquatic/terrestrial/human toxicity potential
 - Cumulative energy use
 - Abiotic resource use
 - Ozone depletion potential
 - Biotic resource use
 - Consumptive water use
 - Land use
 - Novel categories? E.g. Fish In Fish Out ratio
 - Socio-economic indicators too?
 - Provides comprehensive assessment of global impact and avoids trade-offs

Aquaculture

BE THE DIFFERENCE

Functional unit

- LCA measures and compares the function of different products and services
- The difference between a standard light bulb (SLB) and an energy saving light bulb (ESLB).

- Manufacturing impact of ESLB is higher
- Energy use is much lower
- Life time is much longer
- Disposal (end-of-life) concerns around ESLB - mercury

What are we measuring? - Functional unit (FU)

- LCA measures the "function" of products
- E.g. Plastic disposable vs. ceramic mug
- Ceramic mug manufacture uses a lot more resources than a plastic cup but is used many more times
- How many uses before it breaks?
- Vessel manufacture
- Disposal/recycling of plastic...
- Washing of ceramic
 - Energy, water, detergents
- FU = 1000 cups of coffee in either ceramic or plastic cups?
- FU choice depends on goal of study

LCA – where does the data come from?? Considerations....

- What is the boundary of the study?
 - The value chain up to processing?
- What is the "functional unit"?
 - Processed products at the processor gate?
- Where is the data coming from at each point in the study?
 - Surveys (primary)
 - Literature (secondary)
 - Database (background)

12

Marine ingredients sustainability trade-offs

Land Use, Biotic
Resource Use and
Global Warming
Potential (bubble
size) major feed
ingredient (1 tonne
production)

Bubble size: increasing carbon footprint

BE THE DIFFERENCE

Local contextualisation?

<u>Figure</u> 8.41 Comparative GWP impacts from single cell bacteria protein and microalgae oil produced with EU average electricity mix and Norwegian energy mix.

Livestock and feed

- Feed is the biggest operating cost to production
- Efficient use is critical to reducing overall environmental impacts
- Beef is highest but nutritional value of feeds and products differ

Livestock and land

UNIVERSITY OF STIRLING

- Feed carries most impact
- Land use largely reflect FCRs
- Shrimp have a huge range of systems intensity

Contested but increasingly mainstream.....

Outdated Data Relies on lab-scale studies and overlooks recent industrial LCA updates.

No Industry Consultation UK producers weren't engaged, and as a result, key insights were missed

Skewed Comparisons: Modelling used for conventional proteins downplayed environmental impact, whilst assumptions made for insect protein inflated it

Waste Valorisation Ignored: The LCA overlooks insect farming's role in tackling food waste and instead assumes that insects are fed a "traditional feed" of wheat.

Policy Impact at Risk: Misleading assumptions across the LCA hinder sustainable feed innovation.

09:00 | New proteins | News

 Thanks to Richard Newton, other colleagues at the Institute of Aquaculture and its start-up Blue Food Performance for support preparing this presentation

