

ENVIRONMENTAL RISKS AFFECT THE SEAFOOD INDUSTRY

2 years

Global risks ranked by 1,500 global experts over the short (2 years) and long term (10 years):

WEF Global Risks Perception Survey

_ ,			
1st	Misinformation and disinformation		
2nd	Extreme weather events		
3rd	Societal polarization		
4th	Cyber insecurity		
5th	Interstate armed conflict		
6th	Lack of economic opportunity		
7th	Inflation		
8th	Involuntary migration		
9th	Economic downturn		
10th	Pollution		

10 years

1st	Extreme weather events
2nd	Critical change to Earth systems
3rd	Biodiversity loss and ecosystem collapse
4th	Natural resource shortages
5th	Misinformation and disinformation
6th	Adverse outcomes of AI technologies
7th	Involuntary migration
8th	Cyber insecurity
9th	Societal polarization
10th	Pollution

Almost all environmental risks dominate the risk landscape over a 10-year period.

Risk categories

Economic

Environmental

Geopolitical

Societal

Technological

LAND-BASED FARMING WILL DISRUPT THE SEAFOOD INDUSTRY

LOCAL EXOTICS: AN EUROPEAN FOODTREND

- Production close to consumer markets
- Low land usage due to high productivity
- Fair wages and good working conditions
- Environmental-friendly footprint
- ESG compliant with focus on key UN goals

- Year-round constant production conditions
- Energy and nutrient recycling
- No use of antibiotics or pharmaceuticals
- Transparent and traceable farming
- European legal framework

RAS-TECHNOLOGY "MADE IN GERMANY"

OCEANLOOP TECHNOLOGY DIFFERENCIATORS

	Closed water cycle	Low-head raceway	Plug-flow design	High recirculation	Multi-batch stocking
		<u> </u>			1 2 3
Key facts	Water renewal rate: <0,5% of the system water volume per day based on location	System's head loss: Approximately 2m including degassing and protein skimmer	Laminar flow: Velocity of 4-6 cm per second	Flow-rate: Up to 4 times the basin water volume per hour	Stocking interval: Adjustable basins and stocking in the range of 1-3 months
Advantages	 Low water consumption Location independence Increased biosecurity Waste recycling 	 Approximately 60% energy savings for water recirculation compared to conventional design Reduced footprint Reduced piping and surfaces eliminate off-flavors 	 Up to 50% better water quality for the same water recirculation Laminar flow pattern improves species and feed distribution Improves self-cleaning in the basin 	 Higher recirculation rate improves water quality and reduces daily concentration spikes Increases velocity and reduces sedimentation in basin 	 Up to 3x higher production efficiency compared to single batch stocking Year round continuous harvest Constant biomass and feed load No species transfers

ANIMATED MULTIPLE BATCH STOCKING case shrimp

COMPUTER VISION TO IMPROVE RAS-FARMING

Oceanloop biomass and welfare detection software for shrimp

Individual weight detection

Vertical shrimp counting

Stress detection

Biomass detection

BLE funded R&D project "ShrimpWiz" 2024-2026

FARMING EFFICIENCY IS THE KEY TO SUSTAINABILITY

OCEANLOOP SUSTAINBABILITY 3

49% saving in land use

96% saving in used water resources

77% saving in global warming

100% renewable energy

LAND WE AT THE HOLL AND THE

		per ton shrimp	Oceanloop	Pond Farming ¹
	Global warming potential	ton CO ₂	3.8 4	2.8 – 48 ²
	Total land use	ha	0.25	0.48
	Feed	ha	0.24	0.30
	Farming	ha	0.001	0.14
	Support	ha	0.002	0.03
	Total water use	m³	2,866	76,817
	Feed and others	m³	2,803	3,457
	Water exchange	m³	63	73,360
No.				

¹ Resource use in whiteleg shrimp *Litopenaeus vannamei* farming in Ecuador. https://doi.org/10.1111/jwas.12818

² Literature research on shrimp farming LCA:-GWP: 2.75 - 48.0 kg CO2e (median: 16.5 kg CO2e)

³ per ton shrimp Oceanloop Europe vs. pond farming ¹

⁴ preliminary "Cradle-to-gate" data without infrastructure and capital goods

OCEANLOOP REYCYLES WATER AND NUTRIENTS

Shrimp

"Nose-to-tail" processing

Grouper

Launched 2024

Main material input:

- Feed
- Oxygen
- Water

Renewable energy

SEA SALT Seawater and waste heat is used to produce a sprayable sea salt.

Launched 2024

Other processed shrimp products are easy peel, tartar, and carpaccio.

All parts of the grouper are processed and used including:

- · Filet with skin
- Belly
- Collar
- Head

Liver

Further we investigate the use of:

- Collagen
- Scales
- Intestines

Waste water can be reduced to below 0.1% of the system's water volume per day. Particulate nutrients incl. moults

Used today also for biogas production.

Dissolved nutrients

Aeroponic sea herb farming

Organic fertilizer

Bouillon & soup

Launched 2023

Shell

TERRA PRETA

Development followed the ancient practice of terra preta, a type of very dark, fertile anthropogenic soil found in the Amazon basin.

terra preta

Analysis have shown a mixture of charcoal, bones, broken pottery, compost and manure.

A WAY TO ADD VALUE FROM SLUDGE AND MOLTS

By vapo-thermal carbonization sludge can be transformed to bio-coal

Use cases:

- raw material for terra preta
- potential for carbon sequestration

Potential to increase revenues by 10-20%

Usage of solid waste streams from a shrimp Oceanloop farm (underlined)

Ingredient	Share	Functional description
<u>Biocoal</u>	15%	Nutrient and water storage, Soil ventilation
Molts*	10%	Improving the rhizosphere microbiology
Dead shrimp	10%	Manure substitute, organic fertilizer
Phonolith	8%	Source of minerals, Water storage and Soil ventilation
EM water	10%	Effective microorganisms
Plant humus	47%	Compost substitute, organic fertilizer

